Learnability of the Superset Label Learning Problem
نویسندگان
چکیده
In the Superset Label Learning (SLL) problem, weak supervision is provided in the form of a superset of labels that contains the true label. If the classifier predicts a label outside of the superset, it commits a superset error. Most existing SLL algorithms learn a multiclass classifier by minimizing the superset error. However, only limited theoretical analysis has been dedicated to this approach. In this paper, we analyze Empirical Risk Minimizing learners that use the superset error as the empirical risk measure. SLL data can arise either in the form of independent instances or as multiple-instance bags. For both scenarios, we give the conditions for ERM learnability and sample complexity for the realizable case.
منابع مشابه
Superset Learning Based on Generalized Loss Minimization
In standard supervised learning, each training instance is associated with an outcome from a corresponding output space (e.g., a class label in classification or a real number in regression). In the superset learning problem, the outcome is only characterized in terms of a superset—a subset of candidates that covers the true outcome but may also contain additional ones. Thus, superset learning ...
متن کاملA Conditional Multinomial Mixture Model for Superset Label Learning
In the superset label learning problem (SLL), each training instance provides a set of candidate labels of which one is the true label of the instance. As in ordinary regression, the candidate label set is a noisy version of the true label. In this work, we solve the problem by maximizing the likelihood of the candidate label sets of training instances. We propose a probabilistic model, the Log...
متن کاملLearnability of Multi - Instance Multi - Label Learning
Multi-Instance Multi-Label learning (MIML) is a new machine learning framework where one data object is described by multiple instances and associated with multiple class labels. During the past few years, many MIML algorithms have been developed and many applications have been described. However, there lacks theoretical exploration to the learnability of MIML. In this paper, through proving a ...
متن کاملAn Effective Approach for Robust Metric Learning in the Presence of Label Noise
Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...
متن کاملA High Speed Multi-label Classifier based on Extreme Learning Machines
In this paper a high speed neural network classifier based on extreme learning machines for multi-label classification problem is proposed and discussed. Multi-label classification is a superset of traditional binary and multiclass classification problems. The proposed work extends the extreme learning machine technique to adapt to the multi-label problems. As opposed to the singlelabel problem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014